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Distributions and wave front sets in the uniform
non-archimedean setting

Raf Cluckers, Immanuel Halupczok, Frangois Loeser and Michel Raibaut

ABSTRACT

We study some constructions on distributions in a uniform p-adic context, and also in large
positive characteristic, using model theoretic methods. We introduce a class of distributions
which we call distributions of €**P-class and which is based on the notion of ¥“*P-class functions
from Cluckers and Halupczok [J. Ecole Polytechnique (JEP) 5 (2018) 45-78]. This class of
distributions is stable under Fourier transformation and has various forms of uniform behavior
across non-archimedean local fields. We study wave front sets, pull-backs and push-forwards of
distributions of this class. In particular, we show that the wave front set is always equal to the
complement of the zero locus of a “*P-class function. We first revise and generalize some of the
results of Heifetz that he developed in the p-adic context by analogy to results about real wave
front sets by Hormander. In the final section, we study sizes of neighborhoods of local constancy
of Schwartz—Bruhat functions and their push-forwards in relation to discriminants.

1. Introduction

1.1.

The study of wave front sets since Hérmander has been a bridge between geometry and
analysis, pure and applied, as in the study of partial differential equations and associated
distributions. Our research is driven by the quest for p-adic and motivic analogues for results in
real and complex geometry and analysis, where in the p-adic case the link between distributions
and differential operators still has many mysterious aspects. Here, we introduce a uniform
algebraic viewpoint on p-adic wave front sets, based on model theory, and we prove results
like Theorem 3.4.1 which seem to be waiting for real analogues, and which in particular yield
uniformity in the local field and natural notions of families of distributions.

1.2.

In his paper [15], Heifetz developed a p-adic version of the wave front set of a distribution first
introduced by Hormander in the real case in [16], as follows. Let K be a p-adic field and X be
an open subset of K™. A distribution v on X is an element of the linear dual of the complex
vector space of locally constant functions with compact support on X. For A an open subgroup
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of K* of finite index, one says that u is A-smooth at a point (¢, &) € X x (K™ \ {0}) if there
is a neighborhood U x V of (g, &y) such that, for any locally constant function ¢ with compact
support on U and any £ € V, the Fourier transform F(pu)(A) of pu vanishes for A € A\ C for
some compact C C K. The complement of the locus of A-smooth vectors in X x (K™ \ {0}) is
the A-wave front set WF, (u) of u. The goal of this paper is to study distributions and their
wave front sets in a uniform p-adic context, and also in large positive characteristic, using
model theoretic methods, in order to obtain uniformity results.

Let us now provide a more detailed description of the content of this work. We start in
Section 2 by revisiting and improving the results and constructions of Heifetz [15]. In particular,
instead of using K-analytic maps as in [15] we deal with strict C' maps throughout (cf.
Definition 2.1.1) Also, we work over any non-archimedean local field without any restriction
on the characteristic until the end of Section 2. Another important novelty is the introduction
in Definition 2.9.1 of a topology on the space of distributions in order to make explicit the
continuity aspects in Theorem 2.9.3 on pull-backs of distributions. Note that such a topology
was not considered in [15], and that if one does not specify this finer topology, the pull-back
construction is not continuous and not well defined as we show in Example 2.9.7.

The core of this paper lies in Section 3 where we study uniformity with respect to the local
field. To this aim we have to use the field-independent descriptions provided by model theory
and uniform integration, cf. [5, 6, 9]. More precisely, we introduce a class of distributions given
by uniform, field-independent descriptions, called of % °*P-class. Roughly, we require that the
continuous wavelet transform is a ¢**P-class function in the sense of [6]. These distributions
are not only uniform, they also have some geometric properties that arbitrary distributions do
not share, and moreover, this class of distributions is stable under Fourier transformation and
under pull-backs. In our study of ¥“*P-class distributions, we make full use of [5, 6] in proofs:
this includes use of limits in the proof of Theorem 3.4.3, elimination of universal quantifiers and
of the sufficiently large quantifier in the proof of Theorem 3.4.1, and, stability under integration
in the proof of Theorem 3.3.5. As we show in Example 3.4.6, one cannot expect the wave front
sets associated to distributions of €“*P-class to be definable in general. However, we prove in
Theorem 3.4.1 that the wave front sets associated to distributions of €“*P-class are always the
complement of a zero locus of a function of #“*P-class. Note that this is in sharp contrast with
Theorem 2.8.9 of Section 2 which states that the wave front of an abstract distribution can be
equal to any closed cone. Our control of the wave front sets shares some similarities in spirit
with the work by Aizenbud and Drinfeld in [2]. We make this connection explicit in Section 4,
where we also rephrase an open question of [2], see Section 4, Definition 4.1.1.

Finally, in Section 5 we investigate a natural question relative to the behavior of Schwartz—
Bruhat functions under integration. What we prove is essentially that the valuative radius of
balls on which the integral of a Schwartz—Bruhat function ¢ along the fibers of a morphism f
between projective varieties is linearly controlled by the valuative distance to the discriminant
of f and the valuative radius of balls on which the function ¢ is constant.

2. Some additions on wave front sets in the non-archimedean case

In this section we let K be a non-archimedean local field (namely either a finite field extension
of Q,, for some prime p or isomorphic to F,((¢)) for some prime power ¢). We give additions to
Heifetz’ constructions from [15] in three ways: we use strict C'! maps instead of K-analytic maps
throughout; we work with any (non-archimedean) local field instead of only p-adic fields; we
make the topology and continuity aspects explicit in order to define pull-backs of distributions
(this is omitted in [15]). From Section 2 on, we combine this with definability conditions which
will allow us to work uniformly in K (usually excluding F,((¢)) of small positive characteristic
however).
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Let Ok denote the valuation ring of K with maximal ideal Mg and residue field kx with
qr elements and characteristic pg. Let | - | be the ultrametric norm on K so that a uniformizer
of Of has norm gy ', and write ord : K — Z U {+oc} for the valuation sending a uniformizer
to 1. Let ¥k be an additive character on K which is trivial on Mg and non-trivial on Og.

2.1. Strict C' manifolds
The notion of strict differentiability is rather old, but we follow [4, Definition 7.9; 13,

Definition 3.1], and their treatments.

DEeFINITION 2.1.1. A function f:U C K™ — K™ with U open in K" is called strictly
differentiable or strict C* at a € U if there is a matrix 4 in K™*™ such that

fl@)—fly) —A-(z—y)

(@,y)—(a,a) |z —y|

:O,

where the limit is taken over (z,y) € U? with x # y. Such A is automatically unique and we
denote it by f'(a) or by Df(a).

The function f is called strict C! if it is strict C* at each a € U. Note that K-analytic maps
are automatically strict C*.

See [4, Proposition 7.11; 13, Lemma 4.4; 14, Theorem A], for comparisons with alternative
differentiability notions. Clearly, a strict C! function is C' [13, Lemma 3.2].

By the inverse and implicit function theorems for strict C' maps from [13, Theorems 7.3 and
7.4], strict C! submanifolds in K™ can be defined, with a well-defined (and unique) dimension,
see [3, Section 2.3; 4, Section 8].

DEFINITION 2.1.2. A strict C' chart of K™ is nothing else than f:U — V with U ¢ K"
and V C K™ two open sets, f a strict C! isomorphism (namely a strict C'! bijection with strict
C! inverse). A non-empty subset X C K" is a strict C' submanifold of K™ of dimension ¢ for
some ¢ with 0 < £ < n if for each x € X there exists a chart f : U — V of K" such that x € U
and such that f(X NU) equals V N (K’ x {0}).

REMARK 2.1.3. This notion is equivalent to the following. A non-empty subset X of K™,
with the induced subspace topology, is a strict C'' submanifold of K™ of dimension ¢ for some
£ > 0 if, for each z € X, there exist an open U of X containing = and a coordinate projection
p: K™ — K such that the restriction of p to a map pw : U = p(U) is an isometry and such
that pz,l is strict C.

By a strict C'' manifold we will mean a strict C' submanifolds of K™ of some dimension
¢ for some n > £. Note that, for us, strict C'' submanifolds of K™ are locally everywhere of
the same dimension. The notion of strict C'* morphisms and isomorphisms between strict C'!
manifolds is clear.

We use finite-dimensional fiber bundles as in [4, p. 255]. For example, for a strict C*
submanifold X of K™, the tangent bundle TX C K" x K™ and the co-tangent bundle 7% X C
K™ x (K™)* are well defined. Here, (K™)* is the dual vector space of K™, and we write z - £ for
the evaluation of £ € (K™)* in x € K™. We identify (K™)* with K™ using the standard bases.
Recall that T X is the bundle above X such that for z € X, the fiber above z is the dual vector
space of the tangent space to X at x. We write 7*X \ {0} for the intersection of T7*X with
X x (K™\ {0}). Similarly, for a strict C'' submanifold Y of X, we can consider the normal
bundle N;¥ and the co-normal bundle CN;¥ of Y C X. Recall that N5X at y € Y is the quotient
of the tangent space to X at y by the tangent space to Y at y, and that the co-normal bundle
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CN;¥ is the dual bundle of N;*. For a smooth algebraic variety X over K and a locally closed
smooth subvariety ) C X one defines the tangent bundle T'X, the cotangent bundle T*X, the
normal bundle fo and the co-normal bundle CN{,( as usual, see, for example, [2, Section 2].
For a strict C'' morphism f : X — Y between strict C'! submanifolds of K", respectively, K™
and zo € X, we write D f(xg) for the linear map from the tangent space T, X to X at z( to
the tangent space Ty(,,)Y to Y at f(xo), and "D f(x0) is its dual map, from the dual space of
Tf(z0)Y to the dual of T, X.

2.2. Distributions

For © € K™ and r € Z, write B,(z) for the ball {2’ € K™ | ord(x — 2’) > r}, which we call a
ball of valuative radius r. We will simply write B, for B,(0). For X a subset of K™ (or of
another space depending on the context), write 1x for the characteristic function of X.

DEFINITION 2.2.1. Let X be a strict C' submanifold of K™. We denote by C*(X) the
C-vector space of locally constant functions on X with complex values. We call functions in
C>(X) sometimes C°°-functions, which should not be confused with strict C*-functions.

DEFINITION 2.2.2. Let X be a strict C! submanifold of K", say, of dimension £. Write S(X)
for the C-vector space of Schwartz—Bruhat functions on X, namely, functions in C*°(X) with
compact support.

REMARK 2.2.3. Let ¢ be a non-zero Schwartz—Bruhat function in S(K™). Since the support
of ¢ is compact, there is a maximal integer a~ () such that ¢ is supported in the ball B, ().
Since ¢ is locally constant and has compact support, there is a minimal integer o™ () such
that ¢ is constant on balls of (valuative) radius a™(y).

DEFINITION 2.2.4. Let X be a strict C' submanifold of K™. A distribution v on X is by
definition a C-linear map from S(X) to C. Write S’(X) to denote the collection of distributions
on X. For any Schwartz—Bruhat function ¢ in S(X), depending on the context we will denote
the evaluation of u on ¢ by u(p) or (u, ). The vector space S'(X) has a structure of C*°(X)-
module by the following operation: For any C*° function ¢ on X and any distribution « in
S'(X), the distribution ¢u is defined by

(du, ) = {u, o)
for any Schwartz—Bruhat function ¢ in S(X).

The following definition will turn out to be convenient in the definable context.

DEFINITION 2.2.5. Let X be a strict C'' submanifold of K. The B-function D, of a
distribution « on X is the map from X x Z to C sending (z,7) with z € X and r € Z to
u(1p, (»)nx) if Br(z) N X is compact, and to zero otherwise. (Recall that 14 stands for the
characteristic function of A.)

The B-function D, of a distribution « on a strict C' submanifold X ¢ K™ may be considered
(up to a scaling factor q% with £ the dimension of X), as the p-adic continuous wavelet
transform W (u) : X x Z — C of w with mother wavelet the characteristic function of the unit
ball By(0) around zero. More precisely, W (u) is defined (by analogy to real continuous wavelet
transformation) as

W(u)(z,7) := qMDu(;U, T).
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REMARK 2.2.6. Clearly 1g (;)nx lies in S(X) if B.(z) N X is compact. Moreover, every
Schwartz—Bruhat function on X is a (finite) C-linear combination of functions of the form
15, (2)nx Wwith B.(z) N X compact, and hence, a distribution u on X is determined by its
B-function.

DEFINITION 2.2.7. Let X be a strict C! submanifold of K™ and let Dy be a function on
X X Z. Say that Dy is a function on balls if, for any r € Z and any z,z’ in X such that
B,.(z) N X equals B,.(z') N X, one has Dy(x,r) = Do(z',r). Write Do(B) for Dy(x,r) if Dy is
a function on balls and B is the ball B,.(z). Say furthermore that Dy is a B-function if Dy is
the B-function of a distribution on X. If this is the case, write up, to denote this distribution.

The next (basic) lemma gives precise conditions to be a B-function.

LEMMA 2.2.8. Let X be a strict C' submanifold of K™ and let Dy: X xZ — C be a
function. Then Dy is a B-function if and only if Dy is a function on balls such that Dy(B) =0
whenever BN X is not compact, and, for any ball B with BN X compact and any finite
collection of disjoint balls B; with U; B; = B one has

ZDO(B,;) = Dy(B). (2.2.1)

Proof. The direction from left to right is clear. For the other direction, suppose that Dy is
a function on balls and satisfies (2.2.1) and that Dy(B) = 0 whenever B N X is not compact.
We only need to show that the map u sending a Schwartz—Bruhat function ¢ with

p=> cilp, (2.2.2)
i=1

for some complex numbers ¢; and some balls B; in X to

Z ¢iDo(B;) (2.2.3)

is well defined, since linearity is clear. By (2.2.1) and by rewriting if necessary, we can suppose
that all the B; are disjoint (and even of equal radius). But then, again by (2.2.1), the value in
(2.2.3) does not depend on the way of writing ¢ as in (2.2.2). O

2.3. Distributions on manifolds

Any strict C* submanifold X of K™ of dimension ¢ comes with a natural induced ¢-dimensional
measure, induced by the submanifold structure X C K™. Let us denote this measure by ux.
If U € X is open and p: K™ — K’ is a coordinate projection such that the restriction U
U — p(U) is an isometry (see Remark 2.1.3), then the measure py;(|dz;, A--- Ada;,|) on U
equals the restriction of px to U, where p is the projection sending z to (z;,,...,z;,), and
where |dz;, A --- Adz;,| is the Haar measure on K* which gives measure 1 to O%.

Let f: X CK"—=Y CK™ be a strict C' morphism between strict C' submanifolds
and let u be a distribution on X. Suppose that the restriction of f to the support of u
(see Definition 2.4.3) is proper (proper meaning that inverse images of compact subsets are
compact). Then, for ¢ € S(Y'), the composition ¢ o f lies in S(X), and hence, we can define
the push-forward f.(u) as the distribution on Y sending ¢ € S(Y') to u(¢ o f). (In fact, f being
continuous instead of strict C'! is enough to define f,(u).)

A distribution u on a strict C'' submanifold X C K™ can be restricted to a non-empty open
U C X to a distribution denoted by w|; and which sends ¢ in S(U) to u(p), where ¢ is the
extension by 0 of ¢.
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2.4. Representation, support, singular support

DEFINITION 2.4.1. Say that a distribution u on a strict C* submanifold X of K™ is represented
by a C* function if there is a function f: X — Cin C*(X) so that for all ¢ in S(X) one has

u(p) = / e @,

REMARK 2.4.2. Vice versa, a C* function h : X — C determines a distribution sending ¢
in S(X) to the integral

[ h@ewns.
zeX
We thus find a map C*°(X) — §’(X) which is an injective linear map.

DEFINITION 2.4.3. Let u be a distribution on a strict C' submanifold X of K. The zero
set of u is the set of points x of X such that there is a compact open neighborhood U of =
where 1ywu is represented by the zero function. The support of u is the complement in X of
the zero set of u and is denoted by Supp(u).

DEFINITION 2.4.4. A distribution u on a strict C' submanifold X of K" is smooth at a
point x of X, if there is a compact open neighborhood U of x in X such that 1y u is represented
by a C'*° function. The complement in X of the set of smooth points of u is called the singular
support and denoted by SS(u).

2.5. Fourier transform and oscillatory integrals

DEFINITION 2.5.1. For a distribution v on K", the Fourier transform JF(u) is the distribution
on K™ sending ¢ in S(K™) to u(F(¢)), where F(p) is the Fourier transform of ¢ with respect
to the character 1, namely, for y € K™,

Few = [ ez,
TeEK™

with |dz| the normalized Haar measure on K" which gives measure 1 to O} and where

zly = > 1", x;y;. Note that F is a linear isomorphism from S(K™) to S(K™).

For various results related to harmonic analysis on local fields, we refer to [20]. For the
convenience of the reader we prove the non-archimedean version of the Paley—Wiener theorem
[17, Theorem 7.3.1].

THEOREM 2.5.2. Let u be a distribution on K™ with compact support. Then the distribution
F(u) is represented by the following function in C*°(K™):

R : & (u, ¢ (- | €))

with ¢ a characteristic function of a ball containing the support of u. Furthermore, if moreover
F(u) has compact support then R, lies in S(K™).

Proof. As the character ¢y is trivial on Mg, for any & in K", the function g (- | §) is
constant on balls of valuative radius 1 — ord&. Let ¢ be the characteristic function of a ball
Bpr containing the support of u. For any &, the function ¢y (. | €) is Schwartz—Bruhat. By
the same argument, the function R is constant on balls of valuative radius larger than 1 — R
and does not depend on such ¢. Indeed, if ¢’ is any other characteristic function of a ball
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containing the support of u, then one of these balls is included in the other and by definition
of the support, u vanishes on the difference (¢ — ¢ )i (. | £) for any &.

We consider ¢ = 15, as before, and we prove that the distribution F(¢u) is represented by
the function R, namely

(F(ou), @) = / (u, e (| €))p(€)d (2.5.1)

n

for any Schwartz—Bruhat function ¢ in S(K™).
By additivity, it is enough to prove the result for characteristic functions of balls, for instance
for o = 1p (¢,) with r > 1 — R. By definition of the Fourier transform of distributions, we have

(F(gu), ) = (u, oF )

and we obtain by computation

(F(ou), @) = vol(By)(u, 1, _ Yk (- | &))-

By assumption on r, the function Ry is constant on the ball B, (§y) which gives the equality
(2.5.1). The second assertion follows from the inverse Fourier transform formula. O

Let X be an open set of K", ¢ be a Schwartz—Bruhat function in S(X) and p be a strict C*
map from X x K" to K. For A in K* and 1 in K" we set

I(p &)() == /X o) Op(, ) )z

The following is a non-archimedean stationary phase formula, similar to [15, Proposi-
tion 1.1] but without restrictions on the characteristic of K. The proof is the same as for
[15, Proposition 1.1].

PROPOSITION 2.5.3. Let X C K™ and V C K" be two open sets. Let p be a strict C' map
from X x V to K and ¢ be in S(X) with support Supp(¢). Assume that there is 6 > 0 such
that for any (x,7n) in Supp(¢) x V one has

| grad, p(z,n)| =6 > 0.

Suppose further that |R(x,y,n)| is bounded for x and x + y in Supp(¢) and n in V', where R
is defined by
p(z +y,m) = plz,n) + (grad, p(z,n)ly) + (R(z,y,n)yly).

Then, A — I,,(p, $)(\) has bounded support on K, with bound independent of n € V. Namely,
there is an integer r such that, for each n € V, the support of A — I,,(p, ¢)(\) is contained in
the ball B,.

2.6. Approximations

DEFINITION 2.6.1. For n > 1, for any Schwartz—Bruhat function ¢ in S(K™) and distribution
uin 8'(K™), we define the convolution of u by ¢ as the function

ux@:x— (u,dlx—)).

REMARK 2.6.2. The convolution product u * ¢ is a locally constant function. Indeed, as a
Schwartz—Bruhat function, ¢ is constant on balls of radius a*(¢), and thus, for any 2’ in K"
with ordz’ > a*(¢) and any = and y in K™, we have

o((z+2") —y) = oz —y)
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which implies
(ux@)(z +2') = (u*¢)(a).

PROPOSITION 2.6.3 (Associativity). For any distribution v in 8’(K™), for any Schwartz—
Bruhat functions ¢ and ¢ in S(K™) we have the associativity property
(ux @) xp=ux(dxp).
Proof. By decomposition of a Schwartz—Bruhat function as a linear combination of

characteristic functions of balls and by linearity of the product it is enough to prove the
property in the case of ¢ = 1p () and ¢ = 1p (q) With r > 7. In that case we have

(ux1p. ) * 1B, (a)(2) = / (u,x = 1p 1)(y — @)1, () (2 — y)dy

n

— [ a1 -y
By(z—a)

:Z/ (u,z— 1p, (y—x —b))dy
i 7'(y'1)
the last summation is finite and comes from the decomposition

By(z—a) = |_|Br(i‘/z)

For any 4, for any y in the ball B(y;,r) we have the equivalence
ordy—b—x>r<ordy, —b—x>r

and we have

(w*1p ) * 1B, ()(2) = Z/ (u,x = 1g ) (yi — x))dy
B

= vol(By)(u,z = 15,y (x + b))

= vol(B,)(u,z = 1p, (-—a)(z + b))

= vol(B,){u,z = 1p (411)(2 — T)).
As r > n, we have the following equivalences for any z € K"
B, (b)NB,(z—a) # 0 < B.(b)NB,(2 —a) = B,(b) & be By(z—a) & z € By(a+D).
We deduce the equalities

1,4 * 1B, (a)(2) = / 15,)(Y)1B, (z—a)(y)dy = vol(B,)1p, (att)(2),

n

and by definition of the convolution product we obtain the equality
(ux* (1p, ) * 15,(a))) (2) = ((u*1p,@)) * 1Bn(a)) (2). i
DEFINITION 2.6.4. A sequence of distributions u, in &’'(K™) for £ € N is said to converge

to a distribution u in §’'(K™) if and only if for any Schwartz—Bruhat function ¢ in S(K™), the
sequence of complex numbers ((us, ©)); converges to (u, ).
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PROPOSITION 2.6.5. Let (u¢) be a sequence in S'(K™) which converges to a distribution u.
For any Schwartz—Bruhat function ¢ in S(K™), the sequence of functions F(pu;) converges
uniformly to the function F(pu) on any compact set of K™.

Proof. Let ¢ be a Schwartz—Bruhat function in S(K™). For any & € K™, the function
x = (@) (z | €) is a Schwartz—Bruhat function in S(K™), constant on balls of radius
max(at(¢),1 —ord€). Let ¢ be an integer. The function F(puy) is & — (ug, ot (- | €)). In
particular by definition of convergence in &’, the sequence of functions F(puy) converges
pointwise to the function F(pu). Furthermore, as the support of ¢ is included in the ball
B, (4), the function F(pu,) is constant on balls of radius 1 — o~ (¢). The family of functions
F(puyp) is then equicontinuous on K™. This family is also pointwise bounded. By Ascoli-Arzela
theorem, this family converges uniformly to F(pu) on any compact set.

Alternatively, one can also prove the result without using Ascoli—Arzela theorem, as follows.
We prove first the uniform convergence on any ball of radius larger than 1 — o™ (¢). The result
for any compact set follows immediately by the Borel-Lebesgue property. Let B be such a ball.
If the convergence is not uniform then, there is € > 0 such that for any M > 0 there is m > M
and &, € B such that |F(oum)(&m) — F(eu)(€m)| > €. As B is compact, the sequence (&)
has a limit point £&. We can assume (§,,) converges to £. By equicontinuity of the sequence
(F(puy,)) and by continuity of F(pu) there is an integer r such for any & in B,(€) and for
any m we have

F(pum) (&) = Floum)(€) and F(pu)(&') = F(pu)(§)-

Furthermore, by convergence of (&,,) to & and (F(pum)(§)) to F(pu)(§), there is a bound N
such that for any m > N, we have &,, € B,(£) implying the equalities

f(‘ﬂum)(gm) = ]:(Wum)(g) and F(gou)(fm) = -7:(‘»0“)(5)7

and the inequality

All of that implies

|F (pum)(Em) — F(pu)(Em)l <€

which is a contradiction. O

PROPOSITION 2.6.6. Let (®;) be a sequence of Schwartz—Bruhat functions of S(K™)
supported on a neighborhood U, of zero such that

ﬂUg = {0}
¢
and such that for each ¢
/ Oy(x)dx = 1.
Let u be in 8'(K™). Then the sequence (u * ®y) converges to u in S'(K™).

Proof. For any ¢, we denote by ug, the locally constant function u * ®,. This function
defines a distribution. For any Schwartz—Bruhat function ¢ in S(K™) we have

(wa o) = [ o, (9)olu)dy = (o, + 2)(0)
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with ¢(y) = ¢(—y). By associativity we conclude

() = @ @)0) = (wa s [ ot + )y ).

When ¢ goes to infinity, the support of ®, goes to {0}, in particular there is £y such that for
any ¢ > ly, the support of @, is included in the ball B+, where ¢ is constant and hence

<U<I>z7(p> = <Uq>,(,0>. O

PROPOSITION 2.6.7. Let u be a distribution in 8'(K™). There is a sequence of Schwartz—
Bruhat functions (u;) in S(K™) such that the family of distributions (u;) converges to u.

Proof. Let u be a distribution in §’'(K™). Let () a sequence of Schwartz-Bruhat functions
in S(K™) such that for any compact set C' of K™ there is an index jy such that for any
J = jo, Xjlc = 1. Let (®;) be a sequence of Schwartz-Bruhat functions in S(K™) such that the
support of ®; converges to {0} and such that for any j one has [ ®;(z)dz = 1. For any j, the
convolution product (x;u) * ®; denoted by u; is a Schwartz-Bruhat functions in S(K™). For
any ¢ in S(K™) we have

(uj, @) = <uw — (@) /Kn D;(y)p(z + y)dy> :

Write ¢(y) = ¢(—y). Since the support of the convolution ®; % ¢ is included in the sumset
Supp @, + Supp @, since the support of ®; converges to {0} and since any compact set is
included in the support of x; for j sufficiently large, there is jo such that

Supp ®; + Supp ¢ C Supp x;-
This implies the equality

(uj, ) = <ux - / ®;(y)p(x + y)dy> ~
By the previous proposition and its proof, we deduce

(uj, @) = (ua,;, ) = (U, ). O

2.7. Tensor product of distributions

Let X; and X, be two open sets of K™ and K"2. Let u; € C(X;) and us € C(X2) be two
continuous functions. The tensor product u; ® us is defined on X; x X5 as the function

U K UQ(QL'l, (EQ) = ’LL1(.T1)’LL2(.T2).

It follows from Fubini theorem that for any ¢; € S(X7) and @2 € S(X2) we have

J fomnnnr= (o) (o)

THEOREM 2.7.1. Ifu; € §'(X1) and ug € S'(X5), there is a unique distribution u € §'(X; X
Xs) such that
(U, 1 ® p2) = (ur, p1)(u2, 2), (2.7.1)
for all 1 in S(X1) and o in §(X3). This distribution is denoted by u; ® us.
Furthermore, for any ¢ € S(X; x X3), we have
(u, ) = (u1,z1 = (U2, T2 = (21, 22)))

= <U2,.’L'2 = <U1,$1 — (p(xhxz)» . (272)



DISTRIBUTIONS AND WAVE FRONT SETS, UNIFORM 107

Proof. A Schwartz—Bruhat function ¢ in S(X; x X2) is a linear combination of charac-
teristic functions of balls of X7 x Xs. Furthermore, for any ball B((a1,as2),r) of X7 x X5 the
characteristic function 1p((4, 4,),~) Of the ball is the product of 154, +)-1B(a,,r). This remark
with the constraint 2.7.1 gives existence and uniqueness of the tensor product u; ® us. The
equalities 2.7.2 follow by computation from this observation. O

2.8. Wave front sets

The wave front set WF(u) of a distribution w defined on R™ is a part of R™ x (R™\ {0})
which is conical in the second argument: for any (z,&) in WF(u), for any positive real
number A, (z,A¢) belongs to WF(u). In the non-archimedean context, the analogous of the
multiplicative subgroup R is given by Heifetz in [15] as open subgroups of finite index
in K*.

Let A C K* be an open subgroup of finite index in K *. The intersection of such a subgroup
A with O is a finite index subgroup Ay of Q. Moreover, if a is an element of A with minimal
positive valuation among the elements of A, then A = J,,, a’A . For the remainder of Section 2
we keep A fixed.

For any n, we consider the action of A on K™\ {0} by multiplication. This action induces
an equivalence relation on K™\ {0}, we denote by Sl(\") the quotient space and we identify it
with a compact subspace of K™.

We define A-smooth points and A-wave fronts, generalizing [15, Section 2, p. 288] (which
only treats the characteristic zero case, and only on K-analytic manifolds). The definition uses
the group A and the character 1 as fixed above!.

First we give the definitions for distributions on an open U C K". Let u be a distribution
in §'(U). According to the Paley-Wiener Theorem (Theorem 2.5.2), u is smooth in a
neighborhood of a point « in U, namely z does not belong to the singular support SS(u),
if and only if there exists a Schwartz—Bruhat function ¢ in S(U) such that ¢(z) # 0 and such
that F(¢u) has bounded support. In particular, if u is not smooth in a neighborhood of z, it
is natural to consider the set of critical directions in which F(pu) is not eventually vanishing.
This idea underlies the following definitions.

DEFINITION 2.8.1. Let U C K™ be open and let u be a distribution on U. Let (z0,&)) be
in U x (K™ \ {0}). Say that u is A-microlocally smooth or A-smooth at (z¢,&) if there are
open neighborhoods Uy of g and Vj of &y such that for any Schwartz—Bruhat function ¢ with
support contained in Uy there is an integer N (which may depend on Uy, Vj and ¢) such that
for all A € A with ord A < N one has for all £ in V{, that

Flou)(AE) = 0. (2.8.1)
DEFINITION 2.8.2. Let u be a distribution on an open U C K". The complement in U x

(K™ \ {0}) of the set of (z9,&y) at which u is A-smooth, is called the A-wave front set of u,
and is denoted by WF (u).

By compactness and the definitions, the wave front set lies above the singular support, as
follows. We leave the details of the proof to the reader.

PrOPOSITION 2.8.3. Let u be a distribution on an open U C K". Let w be the projection
from K™ x K™\ {0} to K™. Then the projection m(WF (u)) equals the singular support SS(u).

THeifetz [15] uses a different conductor than we do for ¥k, but this essentially only affects explicit factors
for inverse Fourier transformation and for other explicit calculations.
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REMARK 2.8.4. The local nature of wave front sets is clear from the definition (as in
[15, Proposition 2.1]): Let V.C U C K™ be open and let u be in §’'(U). Then one has

WE () = WF(u) N (V x K™). (2.8.2)

REMARK 2.8.5. Let f:U — U; be a strict C'' isomorphism between two open sets of K"
and u be a distribution in §’(U). A point

(w0,&0) in T*U \ {0}

is A-microlocally smooth for w if and only if the point

(f(z0), ("D f(x0))"" (&)

is A-microlocally smooth for f,u. Here, ‘D f(xy) stands for the transpose of Df(xq), or, in
other words, for the dual linear map of Df(xg) by the identifications made between K" and
(K™

Proof of Remark 2.8.5. The remark follows from Proposition 2.5.3 using the function p
defined by

p(x,n) = (f(2) [ ),

similar as in the proof of [11, Proposition 1.3.2; 15, Proposition 2.3]. Let us repeat the argument
for the convenience of the reader. If w is A-microlocally smooth at (z,&p) and if we put
no = ('Df(z0)) (&), then, by Proposition 2.5.3 and by local Taylor expansions (of degree 1)
of strict C! functions from [4, Theorem 5.1 and Proposition 5.3], there are neighborhoods U,
of zy and Uno of 1o such that for any ¢ in S(U,, ), there exists an N, > 0, such that for any A
in A with, ord A < IV, we have for any 7 in (7,,0

(u, o (A(S() [ m)) = 0.
Using the definition of the push-forward by f, this means

(fou, (o f Yk (A(- | n)) = 0.

We deduce that (f(xo),n0) is a A-microlocally smooth point of f.u. The other implication
follows similarly using f~! instead of f. O

For X a strict C' submanifold of K", recall that T*X stands for the co-tangent bundle of
X, and T*X \ {0} for the set of (x,€) in T*X with x € X and & # 0. Using the previous two
remarks, and again the Taylor approximation formula (of degree 1) for strict C*! functions from
[4, Theorem 5.1 and Proposition 5.3] we can give now the ‘coordinate-free’ definition of wave
front sets for distributions on strict C'* submanifolds.

LEMMA-DEFINITION 2.8.6 (Wave front sets). Let X C K™ be a strict C'' submanifold of
dimension ¢ and let u be a distribution on X. Let (zq,&) be in T*X \ {0}. Say that u is
A-microlocally smooth or A-smooth at (zg, &) if there are an open U C X containing xo and a
strict C'! isomorphism f : U — U; C K*, such that the distribution f, (u)y) on Uy is A-smooth
at (f(z0), *Df(z0))"1&). Moreover, one has that u is A-smooth at (x¢, o) if and only if for all
open set U C X containing o and all strict C' isomorphism f : U — U; C K, the distribution
f+(ur) on Uy is A-smooth at (f(xo), ("D f(20)) '&). The complement in 7*X \ {0} of the set
of (z0,&) at which w is A-smooth, is called the A-wave front set of w, and is denoted by
WFA(U)
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DEFINITION 2.8.7. A subset I' of T*X \ {0} is called a A-cone in T*X \ {0} if and only if,
for each A € A and each (z,&) in T, the point (x, A1, ..., A, ), denoted by (z, &), lies in T'.

REMARK 2.8.8. By definition, the wave front set of a distribution is an example of a A-cone.

Wave front sets can be rather general sets, as shown by the following result, analogous to
[17, Theorem 8.1.4].

THEOREM 2.8.9. Let A be a finite index subgroup of (K*, x). Let d > 1 be an integer. Let
S be a closed subset of K¢ x (K9 \ {0}) which is A-conical in the second factor meaning that
S, when seen as subset of T*K\ {0}), is a A-cone. Then there is a distribution u in S'(K?)
such that WFy (u) = S.

Proof. We adapt the proof of [17, Theorem 8.1.4] to the present context. Let A be an
element of A with minimal positive valuation. Let (zx,60x)r be a sequence in S indexed by
integers k > 0, with |0x|x = 1 for each k and such that any point (x,0) of S with |§| =1 is a
limit of a subsequence of (zy,0%)r. We consider the function u on K¢ defined for  in K¢ by

u(@) = Y N Log A (@ — o))k (@ | =A"%0y),
k>0

where 14 is the characteristic function of O¢.. Clearly u is locally integrable on K¢. Moreover,
u is locally constant outside the projection 7, (S), where , is the projection to K. Indeed, for
xo ¢ m5(5), as S is closed, |0| = 1 for each k > 0 and by compactness, there is a neighborhood
Uz, such that at most finitely many x, belong to Uy, and thus, wy, is a finite sum of locally
constant functions. In particular, the singular support of u is contained in 7, (.5).

We now prove the inclusion WFy (u) C S. Fix (zo, &) ¢ S with g € m,(S). Then there is a
neighborhood U of xg and a A-conical neighborhood V' of &, such that

UxV)ns=0. (2.8.3)

We may suppose that U is closed and that V' =V U {0}. We write u as u = u; + us, where u;
is the sum of terms for k > 0 with x; ¢ U and us is the sum of terms for k > 0 with =, € U.
Then, it follows from its definition that the restriction to U of w; is a finite sum of locally
constant functions on U. For the Fourier transform of us we find

Flu)©) = Y INDEL5 (M= XNT2R0,) v (e | (€ — A0,)), (2.8.4)

k>0, €U

by integrating term by term and by noting that 7 (14 ) = 15, with By C K the ball around
0 of valuative radius 1. As (z, ;) lies in S for each k > 0 we have that 05 ¢ V for each k > 0.
Hence, there is a constant ¢ > 0 such that for any £ € V and 6 ¢ V we have

€ =0 = ¢|(€,0)];

the norm of a tuple being the maximum of the norms of the entries. (The existence of ¢ is clear
for (&,0) with |(£,0)] = 1 and thus for general (£, 6) by scaling.) Thus, for any £ in V' and any
k > 0 one has

NEE = ATH0k] > emax(IATel, | = A7) > el (2:85)

By the presence of 1p, in (2.8.4) and by (2.8.5), the restriction of Fus to V has bounded
support, and hence, (zg,&p) ¢ WF A (u). We have showed that WF, (u) C S.
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Let us now prove the inclusion S C WF (u). Let (20, &) be in S. Let us write x for 15, (4,)-
For any k > 0 such that x, & Bo(zo) and for any z in the ball By(x), one has

10;1,(()\716(33 —xy)) =0.

Hence, the Fourier transform F(xu) has the same form as F(u) in (2.8.4) but with the condition
xr, € U on k > 0 replaced by the condition z € By(xo). We obtain for any k > 0 the equality

Fxu)(A~3%0,) = > INEE2I1 0 (A0, — X270, )b (a5 | A0 — A=¥6;).
§>0, z;€Bo(z0)
Note that for any j > 0 with j # k one has
A0, — A0, > A,
which implies for all k¥ > 0 with z € Bo(x¢) that
Flxuw) A 0x) = N2E £ 0.
In particular, (xo,&n) ¢ WF (u), which finishes the proof. O

For any distribution u on a strict C''-manifold X, we write WF{ (u) for the union of WF} (u)
with X x {0} in 7*X. With this notation, we have the following relation for tensor products.

THEOREM 2.8.10 (Wave front sets and tensor products). Let X; and X5 be two open sets
of K™ and K™, respectively. Let u; be in 8'(X1) and uy be in 8'(Xs). Then we have the
inclusion

WF A (u1 ® uz) € WFQ (u1) x WFS (usz). (2.8.6)

Proof. Denote by £ the right-hand side term of the inclusion (2.8.6). Let P be a point
((a1,m), (az2,m2)) in T*Xy x T* Xy, with (171,72) # 0. Assume P does not belong to £. In
particular (a1, 71) does not belong to WF 5 (u1) or (az,72) does not belong to WE A (u2). Assume
for instance (ay1,m1) € WFA(u1). Then, by the definition of A-microlocal smoothness, there are
an open ball U,, centered at a; and an open ball Um centered at 7; such that for any Schwartz—
Bruhat function ¢ in S(U,, ) there is an integer N,, > 0 such that for all A in A with ord A < N,
and &; in Um we have

F(pu1)(Aé1) = 0.

Consider the open sets Q = U,, x Xy and Q = U,, x K" and choose ¢ € S(). This Schwartz—
Bruhat function is a C-linear combination of characteristic functions of balls of 2 which
themselves are products of characteristic functions of balls in U,, and in X, and thus, ¢
can be written such that for z1 € X; and x5 € Xy

W(Il, 1'2) = Z CilB7,,1 (Il)]‘Bi,Q (2172),
=1

with B; ;1 a ballin Ug,, B; 2 a ball in X, and ¢; a complex number for each i. Denote by N, the
minimum min Ny, over i. Using (2.7.2), we conclude that for any A in A with ord A < N,

and (£1,&2) in Q we have
(U1 ®@ ug, (x1,x2) = @(r1,22) K ((@1,22) | M&1,&2))) =0, (2.8.7)

which shows that the point ((a1,m1), (a2,72)) does not belong to